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An engineering method is proposed for ca lcula t ing the distribution of local  heat  transfer coefficients in 
longitudinal  and cross flow over a p la te  and cross flow over a cyl inder and sphere. 

Heat transfer in gas flow over a body plays a major role in a number of areas of technology and to a considerable 

extent  determines the safety and durabil i ty of building elements .  

There is as yet, however, no simple and re l iab le  engineering method of ca lcula t ing  hea t  transfer for at tached gas 

flow over a body. 

Existing analyt ic  methods of ca lcula t ion are laborious and valid only for part icular  cases. 

The present paper aims at giving a simple and re l iable  method of ca lcula t ing laminar  and turbulent thermal  bound- 

ary layers. 

The equation of an axisymmetr ic  thermal  boundary layer 

OT OT O~T 
u + v  - = a  (1) 

Ox Oy Ov ~" 

with the help of the equation of continuity 

for the boundary conditions 

O(uD) + O(vD) = 0  (2) 
Ox Ov 

u = v = O ,  T = T  w when y = O ,  

U = Uo, T = T O when y =  

may be represented as the following integral  relat ion [1]: 
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(4) 

The integral relation (4) is valid both for laminar and turbulent boundary layers. It is a modification of the equa- 

tion of the thermal boundary layer (I) and should therefore be called the equation of the thermal boundary layer. 

To solve the thermal boundary layer (4) we must know the connection between the parameter Pc0, based on the 
characteristic boundary layer thickness @, and the St number, based on the parameters at the edge of the boundary layer. 

It has been shown [i, 2] that the relation between the local Pe o number and St is conservative with respect to the 

pressure gradient  and variations in wall  temperature .  

To establish this connection we shall use solutions of the laminar  and turbulent  boundary layers for a p la te  with 
constant wail temperature.  

130 



The equation of the thermal  boundary layer, both laminar and turbulent, for a p la te  with constant wall t empera-  
ture has the form 

d Pe o d Pe o 
dx  = = S t P e  L or - -  = S t ;  (5) 

d P% 

with the boundary condition: when ~ = 0 Pe O = 0. 

To establish the connection between Pe 0 and St in a laminar  boundary layer,  we shall  use the heat  transfer equa- 
tion for a flat  isothermal p la te  [8] 

- -  3 

Nu. = 0.332 V~pe~ ~-P-r. (6) 

Equation (6) may  be put  in the following form: 

1 1 

S t = 0 . 3 3 2 P e .  2 Pr  ~" (7) 

Substituting the value of the St number from (7) in (5) and integrating,  we find the following connect ion between 
Pe 0 and Pe x for a laminar  boundary layer: 

1 

P% = 0 . 6 6 4 V P e x p r  ~ �9 (8) 

Substituting Pe 0 for Pe x in (7), we obtain the relat ion between the St number and the Pe number, based on the 
character is t ic  boundary layer thickness O, for the laminar  region: 

1 

St = 0.22 Pc71Pr  - T .  (9) 

To establish the relat ion between the Pe 0 and St numbers in a turbulent boundary layer,  we shall  use the equation 

of turbulent heat  transfer for a flat  isothermal p la te  [3] 

o r  

As for a laminar  boundary layer, 
layer,  using (5) and (10): 

Nu~ = 0.0296 Re ~ Pr ~ (10) 

St = 0.0296 Re7 ~ Pr -~ . (10) 

we now establish the connection between Pe 0 and Pe x for a turbulent boundary 

= p o .8  pr-O.4 Pe 0 0.037 e~ . (11) 

Substituting the value of Pe x obtained from (11) in (10), we get a relat ion between St and Pe 0, based on the char-  

acteris t ic  boundary layer thickness 0, for the turbulent region: 

S t  = 0.013 P e o  ~ P r  - ~  . (12) 

In p rac t ica l  calculat ions the influence of the temperature  factor on the relat ion between the St and Pe 0 numbers in 

the laminar  boundary layer may be neglected [4]. 

For a turbulent boundary layer,  i t  may  be assumed that  the heat  transfer law (12) depends on the temperature  factor 

as follows [1]: 

S t  = ~ - 0 . 5  

Sto Pe0=co,~t --w , (13) 

which is valid in the important  prac t ica l  region of values of T w = Tw/T00 from 0.5 to 3. 

Thus, the heat  transfer law for a turbulent boundary layer will  have the form: 

St 0,013 Pe7  ~ (:Fw pr ) -0  s. (14) 

In calcula t ing the hea t  transfer in flow over bodies it  is necessary to determine the distribution of specific hea t  

flux over the body length, knowing its geometry,  the law of variat ion of the wall  temperature  T w, and the parameters  of 

the stream (uoo, Poo, Too). 

Let us consider the mot ion of a gas with uniform distribution of veloci ty  and temperature  in the stream. The m o -  

tion of the gas inside the boundary layer will  be assumed isentropic, with geomet r ica l  effects determined by the geome-  

try of the body. 
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From the geometry and the perfect fluid solution we determine the variation of velocity at the edge of the bound- 
ary layer u0 = uoo f(x) and the local Peclet number Pe L = Pei~ f (g) .  

The equation of the thermal boundary layer (4) may be written in the form: 

d Pe 0 
- - ~  -4- Pc~ ~dx In [D (Tw -- 1)1 ----St Pe L (15) 

or for a laminar boundary, taking into account (9) and (14): . 

d Pe o d 0,22 Peao f (X) 
d----~-- A- Pe a -d-~--" In [D (Tw --  1)]= , (16) 

Peo l ~ P r  

with the boundary condition: when g = 0 Pe 0 = 0, D = 0, T-w = Twl; and for a turbulent boundary layer: 

d P e o  d 0 ,013  PeLof (X) 
dx 4 - P e ~  Pe  0 ( P r T w )  0 . 2 5  - -  0 . 5  ' 

(17) 

m 

with boundary condition: when x = Xcr Pe 0 = Pe0cr, D = D1, T w = Twl. 

On solving differential equations (16) and (17), we obtain expressions for the laminar and turbulent boundary layers: 

i ( _  S ) Pe o = 0.22Peeo Pr 2 f~)[/~(TWw _ 1)]2dJc ~-, (18) 
0 

pe ~ DI(Twl--1)[pe,.25. ~ f 0.01625 f (x) 

% r  

[ D ( T  w - - 1 ) ] '  .25 __}018 
X bl0"wl-0J p%ax . ( 1 9 )  

Using the laminar heat transfer law (9) and relation (18), we obtain an equation for calculating the heat transfer 
coefficient of the laminar boundary layer in a subsonic gas flow over a body: 

0.332D (7"w -- 1) V PeL, f (x) 
NUL : 1 l (20) 

(~(x)[D(Tw--1)]2dx-)) V pr s- 

Similarly, (14) and (19) can be used to compute the heat transfer coefficient for a turbulent boundary layer with 
subsonic flowpast by a gas: 

pe~ I%7 
- -  1)]"~5/O.01625PeLo+ j" [(x)[D(rw--1)]L:SdZ] ~ , (21) 

x e r  

where Xcr is the point of transition between a laminar boundary layer and turbulence, and L is a characteristic dimension. 

According to (20) and (21), the variation of the heat transfer coefficient over the length of the body may  easily be 
calculated, if the variation of the wall temperature and the velocity at the edge of the boundary layer u0 are known. 

The equation of heat transfer for longitudinal laminar flow over a flat plate with wall temperature varying accord- 
ing to the law T w = Twl + AX has the form: 

1 )L Nus 0.332 V-Rexi~pr  (Twl-- I + Ax-) 8 -- ( f w l -  1)3 
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and for a turbulent boundary layer:  

Nux= [0.0296 Re~ 8 P r  ~ (Twl -- 1 + Ax) ~ [{Re~er/Rex + [(?w,- 1 +A2-) 2'25 

- -  (Tw, 1 + Axcr)2"2s]/2.25Ax}~ 4 ]-~. 

For cross flow over a f lat  p la te  of inf ini te  length and width L, the ve loc i ty  varies according to (5): 

. o  . 
= ~ where x ~ x 

u| V I -- x 2 LI2 

for a cylinder this has the form: 

(23) 

and for a sphere: 

(24) 

- x 
f ( ~ )  = Uo = 2 s i n 2 ~ ,  where x =  ; (25) 

u~ Do 

f (x )  = Uo = 3 s i n 2 x .  (26) 
u= 2 

~ ~u ./ 

~ F  Fig. Comparison of theoret ica l  and exper imenta l  
9 d ~ ,  hea t  transfer data at the stagnation point of a ey l -  

z inder: / i - according to Eq. (80), 2 - according to [8], 
, a, b, c - according to [6], [7], and [8], respect-  

/ o a ively .  
a - - b  //l/I'"__ �9 -- e 

L 

0 2 4 l~ Pe 

Accordingly,  the equation of heat  transfer for cross flow over an isothermal  f lat  p la te  with a laminar  boundary l ay -  
er has the form: 

1 

Nu L = 0.47 ]/'-R-~z, ~ x [ ( 1 -  V " ~ ) ( 1 - x  2) ] -T .  (27) 

Accordingly,  the hea t  transfer equation for a transversely flowed past cyl inder at a constant temperature  can be 

represented in the form: 

Nu D = 0.664VRe o ]}/'Pr sin2x 
(1 -- cos 2x-)/' 

(28) 

For a sphere: 

Nu o := 0.7 V~R--%D t~/-Pr 

For the stagnation point, (28) takes the form: 

sin 2 2~ 

( l c ~  3 - "c~  ~ 2  
(29) 

since 

Nu D =-0.94 V"R--%D ~'-~rr. where ReD= p= Uoo Do 

Poo 
, (30) 

sin 2x 2 lim = ( 31) 
( I  - cos 2x)';' V 2  
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It can be seen from the figure that the calculations based on (30) are in satisfactory agreement with the data of 
other authors. 

NOTATION 

u and v - longitudinal and transverse velocity components in boundary layer; T - temperature in boundary layer; 

x - c o o r d i n a t e  in direction of washed surface; y - coordinate normal to washed surface; T w - wall temperature; 6 -- 
boundary layer thickness; T* -- stagnation temperature at boundary layer; Too - stagnation temperature inside boundary 

layer; %0 - free stream temperature; u~ - free stream velocity; Do - characteristic diameter of body; D - local diam- 
eter of an axisymmetric body; Cp - specific heat Capacity at constant pressure; 00 - density at edge of boundary layer; 
u0 - velocity at edge of boundary layer; a0 - thermal diffusivity at stagnation temperature at edge of boundary layer; 
g - acceleration of gravity; 0 - density in boundary layer; ~0 - coefficient of dynamic viscosity at temperature at edge 
of boundary layer; X - t h e r m a l  conductivity; Pr - Prandtl number; 0 - energy loss thickness;Pc O - P e c l e t  number based on 
energy loss thickness; Re x - Reynolds number based on x; PeLo - Peclet number based on parameters of undisturbed flow; 
Re D - Reynolds number based on parameters of undisturbed flow. 
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